Qnolan4 Profile Banner
Xianjun Yang Profile
Xianjun Yang

@Qnolan4

Followers
727
Following
579
Statuses
254

GenAI safety, data-centric AI. Phd @ucsbnlp, BEng @tsinghua_uni. Open to collaboration. Research scientist on AI safety @AIatMeta. Opinions are my own.

Santa Barbara
Joined February 2020
Don't wanna be here? Send us removal request.
@Qnolan4
Xianjun Yang
7 months
📢New Paper📢 Happy to introduce our new work on whether multimodal LLMs achieved PhD-level intelligence across diverse scientific disciplines! It turns out that the most advanced MLLMs still lag behind a lot! #AI4Science
@ZekunLi0323
Zekun Li
7 months
🚨 Introducing “MMSci: A Multimodal Multi-Discipline Dataset for PhD-Level Scientific Comprehension” 🧐Have current multimodal LLMs achieved PhD-level intelligence across diverse scientific disciplines? Are they ready to become AI scientific assistants? 📢We announce MMSci, a multimodal, multidisciplinary dataset sourced from published articles spanning 72 disciplines from Nature Communications journals #NatureComms, to evaluate and enhance models' comprehension of Phd-level scientific knowledge. ✨Highlights of MMSci: - 72 diverse advanced scientific disciplines, including physics, chemistry, materials science, nanoscience, optics and photonics, biochemistry, energy science, ecology, climate science, ocean science, genetics, immunology, social sciences, agriculture, etc. (. - 131k articles and 742k figures directly crawled from the web instead of extracted from PDF, ensuring diversity and quality. - Heterogeneous and complex multi-panel scientific figures, including charts/graphs, schematic diagrams, macroscopic/microscopic photographs, simulated images, geographical maps, and more. - Benchmarking LMMs' understanding of scientific figures and content, across varying settings. - Visual instruction-tuning data and interleaved article and figures for LMM visual pre-training. 📊 Results and Takeaways on evaluating OSS Models, #GPT4V and #GPT4o: > OSS LMMs showed limited capability in understanding scientific figures, performing near random guesses. #GPT4V and #GPT4o also faced difficulties in challenging settings, achieving 50%-70% accuracy. > Writing relevant and concise captions for scientific figures requires conditioning on the article content, especially the full content to achieve reasonable caption. > Our constructed visual instruction-tuning data improved a 7B LLaVA-Next(v1.6) model to achieve performance comparable to GPT4V/o on our benchmark. > The interleaved article and figure data could be used for LMM pre-training to infuse scientific knowledge, showing improvement on material science tasks.
Tweet media one
Tweet media two
0
3
19
@Qnolan4
Xianjun Yang
9 days
Nice summary
@leedsharkey
Lee Sharkey
11 days
Big new review! 🟦Open Problems in Mechanistic Interpretability🟦 We bring together perspectives from ~30 top researchers to outline the current frontiers of mech interp. It highlights the open problems that we think the field should prioritize! 🧵
Tweet media one
0
0
0
@Qnolan4
Xianjun Yang
17 days
RT @ZhiyuChen4: Our CBT-Bench paper has been accepted to #NAACL2025 Main! Congrats to the lead @_Guuuuuuuu_ and @Qnolan4 . See you in Albu…
0
2
0
@Qnolan4
Xianjun Yang
29 days
RT @GoodfireAI: We're open-sourcing Sparse Autoencoders (SAEs) for Llama 3.3 70B and Llama 3.1 8B! These are, to the best of our knowledge,…
0
126
0
@Qnolan4
Xianjun Yang
29 days
0
0
0
@Qnolan4
Xianjun Yang
29 days
Hi @billyuchenlin, I remember you are the first to post this question. Any comments?🧐
0
0
1
@Qnolan4
Xianjun Yang
29 days
RT @peterbhase: Anthropic Alignment Science is sharing a list of research directions we are interested in seeing more work on! Blog post…
0
7
0
@Qnolan4
Xianjun Yang
29 days
0
0
1
@Qnolan4
Xianjun Yang
30 days
RT @AlbalakAlon: If you're interested in SoTA for reasoning in LLMs, I highly highly recommend reading @rm_rafailov 's thread on Meta Chain…
0
7
0
@Qnolan4
Xianjun Yang
1 month
@VinijaJain @Meta @AIatMeta thanks Vinija!
0
0
1
@Qnolan4
Xianjun Yang
1 month
@ollama @Meta @AIatMeta thanks ollama!
0
0
0
@Qnolan4
Xianjun Yang
1 month
@surmenok @Meta @AIatMeta thanks pavel!
0
0
0
@Qnolan4
Xianjun Yang
1 month
@VSehwag_ @Meta @AIatMeta thanks Vikash!
0
0
0
@Qnolan4
Xianjun Yang
1 month
0
0
0
@Qnolan4
Xianjun Yang
1 month
RT @_zifan_wang: (1/7) Excited to share our new red teaming work at Scale, Refusal-Trained LLMs Are Easily Jailbroken As Browser Agents. We…
0
32
0
@Qnolan4
Xianjun Yang
1 month
@xwang_lk @Meta @AIatMeta thanks Eric!
0
0
1
@Qnolan4
Xianjun Yang
1 month
0
0
1
@Qnolan4
Xianjun Yang
1 month
RT @MLamparth: Want to learn more about safe AI and the challenges of creating it? Check out the public syllabus (slides and recordings)…
0
30
0
@Qnolan4
Xianjun Yang
1 month
0
0
1