un9sky Profile Banner
꽈악추장 Profile
꽈악추장

@un9sky

Followers
2K
Following
44K
Statuses
20K

꽈악 잡고 추매 가즈앙✊

Mars
Joined December 2022
Don't wanna be here? Send us removal request.
@un9sky
꽈악추장
7 hours
@raouldukelee 😀🫡
0
0
1
@un9sky
꽈악추장
7 hours
@Gala_Noder 애국투사 갈노🫡🛰️
0
0
2
@un9sky
꽈악추장
7 hours
나도 이거 회사 게시판에 올릴까 진지하게 고민한 적 있었는데… 인사팀 끌려갈까봐 올리지 못함
@Teslian_invest
Teslian
8 hours
오늘 회사 블라인드글
Tweet media one
0
0
1
@un9sky
꽈악추장
7 hours
@creamwith91 뒤늦은 확신
0
0
1
@un9sky
꽈악추장
8 hours
@tslantir 레스기릿
0
0
2
@un9sky
꽈악추장
8 hours
@GONOGO_Korea 츤츤고노고 매력
0
0
1
@un9sky
꽈악추장
9 hours
@again_my_life 200개까지 차곡차곡 쏘면 좋겠네요!
0
0
1
@un9sky
꽈악추장
9 hours
@again_my_life 다방면으로 뻗어가길🛰️
1
0
0
@un9sky
꽈악추장
9 hours
이건 어떤 의미?
@elonmusk
Elon Musk
13 hours
Tweet media one
0
0
0
@un9sky
꽈악추장
9 hours
@1987_TSLA 4000불가도 욕할 듯
0
0
2
@un9sky
꽈악추장
10 hours
@satl_bird 김장엔 소금
0
0
2
@un9sky
꽈악추장
10 hours
크크크 캬캬캬
Tweet media one
0
0
1
@un9sky
꽈악추장
10 hours
@musklove95 ??피살
0
0
5
@un9sky
꽈악추장
11 hours
김장엔 소금 팍팍 쳐야쥬
@monk_second
YJJ
11 hours
그러하다.. 김치보유비중 10% 쉽게 넘길거 같음
1
0
4
@un9sky
꽈악추장
11 hours
@Tiland2 4돌파 🛰️🚀
0
0
2
@un9sky
꽈악추장
11 hours
@Billionaire_isB 소금이 가즈아
0
0
0
@un9sky
꽈악추장
12 hours
@mathgrace84 ㅋㅋㅋㅋㅋㅋㅋ 맨날 걸려있음
0
0
3
@un9sky
꽈악추장
12 hours
시뮬레이션 훈련도 테슬라는 혼자 다 하네요 구글 바이두 꺼 안쓰고 테슬라 자체 모델을 사용👀
@seti_park
SETI Park
13 hours
FSD v14: Tesla's Simulator for AI Training Using Real-World Data FSD v14 will utilize an AI model heavily reliant on high-definition maps created using data from Tesla's vehicle fleet. Given this reliance on proprietary map data, a natural question arises: why not simply use existing commercial mapping solutions from companies like Google or Baidu? The answer, crucially, lies in Tesla's development of a sophisticated real-world simulator. Tesla's patent WO2024073741A1 details Tesla's simulator, which transforms fleet-collected ground truth data into realistic virtual environments for AI training. The system leverages sophisticated 3D modeling and environmental variation techniques to produce high-fidelity training data. This system allows for extensive and diverse training scenarios, which could be crucial for addressing variations in FSD performance. It's been observed that FSD v13's capabilities differ between high-volume models (M3/MY) and lower-volume models (MX/Cybertruck). The simulator offers a potential solution by generating the specific training data needed for each model. The simulator enables the creation of extensive training datasets encompassing edge cases and rare events that would be impractical or impossible to collect in the real world. This creates a strong foundation for robust AI training. [FIG. 10: Populated traffic environment showing dynamic objects and lane graphs] [FIG. 13: Segmented geography model demonstrating efficient computational resource allocation]
Tweet media one
Tweet media two
1
0
2